Learning objectives for EHS 140 and 240:

(1) Have a conceptual understanding of the major parameters controlling absorption, distribution, biotransformation and elimination, and how these processes can be parameterized to provide toxicokinetic models.

(2) Have a functional knowledge of extrapolations across doses, genotypes, complex mixture interactions, developmental timings and in vitro/in vivo experimental comparisons. Be able to identify a parameter that would facilitate the accuracy of these extrapolations.

(3) Be able to identify the primary molecular events associated with toxicodynamics and the interconnection between these events. Be able to articulate why it is so difficult to distinguish between association and causation.

(4) Have a rudimentary understanding of the different processes of cell death.

(5) Be able to explain how genetic differences between individuals or species has the capacity to impact each and every aspect of the kinetics or dynamics of chemical toxicants.

(6) Be capable of using the fundamental concepts of mutagenesis, carcinogenesis or teratogenesis to address contemporary issues in toxicology.

(7) Develop a rudimentary understanding of the physiology and pathology of the immune, pulmonary and nervous systems to characterize how these systems can be targeted by toxicants.

(8) Have an overview knowledge of the complexities of the endocrine and reproductive systems and the nature of the connections between them in order to explain how toxicants impact these systems.

Learning objective for EHS 240 only:

(9) Be able to read the primary toxicology literature and extrapolate the essential elements in order to produce a written document on the nature of the findings.

29 March (T) Principles of toxicology Klaassen pp. 22-34
31 March (Th) Absorption Klaassen pp. 153-168
5 April (T) Distribution Klaassen pp. 168-174
7 April (Th) Biotransformation: Phase I Klaassen pp. 185-366
12 April (T) Biotransformation: Phase II Klaassen pp. 185-366
14 April (Th) Transporters and Excretion Klaassen pp. 174-180
19 April (T) Toxicokinetics Klaassen pp. 367-390
21 April (Th) Toxicogenetics
26 April (T) Toxicodynamics Klaassen pp. 59-117
28 April (Th) Toxicodynamics
3 May (T) Midterm
5 May (Th) Mutagenesis Klaassen pp. 445-480
10 May (T) Toxicoepigenetics Klaassen pp. 41-43
12 May (Th) Carcinogenesis Klaassen pp. 393-443
17 May (T) Carcinogenesis
19 May (Th) Immunotoxicology Klaassen pp. 559-638
24 May (T) Inhalation toxicology K: pp. 691-731, 1231-1271
26 May (Th) Reproductive/endocrine tox. Klaassen pp. 861-930
31 May (T) Developmental toxicology Klaassen pp. 481-523
2 June (Th) Neurotoxicology Klaassen pp. 733-766
9 June (Th) Final Exam: 11:30-2:30 pm

EHS 240: Fundamentals of Toxicology
Spring 2016

Writing Assignment:
The writing assignment consists of choosing a topic in the recent toxicological literature (e.g. toxicology of a single environmental agent in a specific target organ, pharmacokinetics of a specific toxic agent, aspects of a common step in a pathological/toxicological mechanistic pathway, etc.) and finding at least two recent (preferentially within the previous 5 years) primary references that address this topic. The papers should be related to a single toxicological issue. In the past, students have chosen epidemiological papers as opposed to toxicological papers, and this is not the goal in this course. Explain the issue or issues that have been addressed and the experiments that have been performed in the papers. Explain how the two papers are related and what further issues or experiments need to be performed. It is optimal if you can get two papers that come up with conflicting results. Two papers from the same laboratory are not good. The primary literature refers to papers that present original data as opposed to
review papers. However, it may be useful to read and refer to articles other than the two primary articles, including review articles.

The length of the assignment should be equal to or less than 3 single-spaced pages. The assignment is due on 10 May 2016. The goal of this assignment is to carefully review/analyze some papers in the primary toxicological literature and to understand how experiments are designed and performed in this area of science. Thus, please restrict the topic to one within the area of "toxicology" (which is a broad topic and therefore should not be so limiting).

Textbook:
The textbook for the course will be Casarett and Doull's Toxicology: The Basic Science of Poisons edited by C. D. Klaassen (8th ed.). This is a classic text in the field of toxicology, but it is better as a reference book than as a readable introduction to the topic.

Grading: The course grade will be determined by the following four components:

- Midterm Examination: 100 points
- Writing Assignment: 100 points
- Final Examination: 100 points

Examinations from previous years:
The examinations from previous years will be posted on the web at the biomedical library site.
Competencies:

MPH Core Competencies:

C1. Describe the direct and indirect human, ecological and safety effects of major environmental and occupational agents.
F11. Articulate how biological, chemical and physical agents affect human health.

Discipline Specific Competencies for MPH in EHS:

I1.1. Describe the direct and indirect human, ecological and safety effects of major environmental and occupational agents.
I2.1 Explain the general mechanisms of toxicity in eliciting a toxic response to various environmental or occupational exposures.
I2.2. Describe how chemical agents are tested for acute, sub-chronic and chronic health effects, including reproductive, developmental and carcinogenic effects, and use of “omics” methods, and interpret toxicological data in terms of relevance to human health.

EHS MS Competencies:

A1. Retrieve and organize literature; synthesize and critically evaluate scientific literature in environmental health, public health and other relevant fields.

EHS PhD Competencies:

A1. Judge, critique and interpret reports of individual environmental health studies; evaluate strengths and limitations of environmental health reports.