EHS 225: COURSE SYLLABUS

ATMOSPHERIC TRANSPORT AND TRANSFORMATIONS
OF AIRBORNE CHEMICALS

Tuesday and Thursday: 10:00-11:50 am, CHS 61-269, Winter 2016

Instructor

Yifang Zhu,
Associate Professor
Phone: (310) 825-4324
E-mail: yifang@ucla.edu

Course Prerequisites
The course prerequisites are undergraduate physics (e.g., thermodynamics, fluid mechanics, and heat and mass transfer), calculus (including differential equations), probability and statistics, and organic and physical chemistry (including kinetic theory). You are responsible for supplemental work that you may need to catch up in any of the prerequisite areas.

Text Book

Reference Books

Other Required Readings:
Lecture slides and journal articles will be posted on the course website.

Week Topic
1 Introduction: Course Structure and Overview; EPA STAR Proposal Project; Literature Search using Library Database; The Air Pollution System; Atmospheric Composition; Properties of Air; Concentrations of Gaseous Species; Concentration Units and Unit Conversion; Human Impact on Air Pollution at Global and Urban Scales; Historical Perspective; “Health” Implications; The Major Air Pollution Problems; Criteria Air Pollutants and Ambient Air Quality Standards; Classification of Air Pollutants. Reading: SP Chapter 1 & 2; FP Chapter 1 & 2.
1 **Emission Inventory.** Emission Sources by Origins; Point Sources; Area Sources; Mobile Sources; Types of Emission Inventories; Bottom-Up vs. Top-Down Approach; Estimation Methods (Source testing, Emission factor, Mass balance, Emission estimation models, Surveys and questionnaire, Engineering judgment/best approximation); Available Emission Databases and Related Data Sources. **Reading:** SP Chapter 1 & 2; FP Chapter 1 & 2.

2 **The Structure of the Atmosphere and Air Pollutant Transport:** Vertical Temperature Profiles; General Circulation of the Atmosphere; Coriolis Effect; Hemispheric and Global Mixing; Scale of transport; Sulfur, nitrogen, and carbon cycle. **Reading:** SP Chapter 21&22; J Chapter 1 & 2.

2 **Atmospheric Stability** — Lapse Rates; Temperature Inversion; Surface Inversion; Inversion Aloft; Vertical Expansion of Plumes; Typical Time Scales for Vertical Mixing. **Reading:** SP Chapter 16; J Chapter 3 & 4.

3 **Atmospheric Modeling (I)** — One-Box Model; Special Case Box Model; Two-Box Model; Column Model; Atmosphere Residence Time; Dry Deposition of Gases and Particles; Wet Deposition **Reading:** SP Chapter 18; J Chapter 3 & 4.

3 **Atmospheric Modeling (II)** — Gaussian Plume Model; Special Case Gaussian Plume Model; Dispersion Coefficients; Plume Rise. Eulerian and Lagrangian Models; CALINE4; CAL-Puff; **Reading:** SP Chapter 18; J Chapter 3 & 4.

4 **Chemical Kinetics** — Order of Reaction; Theories of Chemical Kinetics; Reaction Orders; Derivation of Atmospheric Lifetimes; Carbon Dioxide Lifetime. **Reading:** SP Chapter 3; FP Chapter 5; J Chapter 9.

4 **Troposphere Chemistry (I)** — OH Radicals; Photochemical Cycle of NO2, NO, and O3; Ozone Budget of the Troposphere and Role of NOx. **Reading:** SP Chapter 4&6; FP Chapter 14; J Chapter 11&12.

5 **Troposphere Chemistry (II)** — NOx and NOy Family; Ozone Air Pollution; Relative Roles of VOC and NOx in Ozone Formation. **Reading:** SP Chapter 4&6; FP Chapter 14; J Chapter 11&12.

5 **Mid-Term Exam**

6 **Stratosphere Chemistry** — Overview; Chapman Mechanism; Nitrogen Oxide Cycles; Ozone Hole; Ozone Depletion Potential. **Reading:** SP Chapter 5; FP Chapter 12; J Chapter 10.

6 **Atmospheric Aerosol** — Particle Size Distributions and Chemical Composition; Particle Residence Times; Gas-to-Particle Conversion; Role of Proximity to Sources; Impacts on Visibility and Human Health. **Reading:** SP Chapter 8; FP Chapter 9; J Chapter 8.
7 **Dynamics of Single Aerosol Particles** — Equivalent Particle Diameter; Stokes’ Law; Gravitational Settling; Stop Distance and Stokes Number; Brownian Motion. **Reading:** SP Chapter 9.

7 **Air Pollution Environmental and Health Impact** — Environment; Ecological System; Air Pollution Health Effects in the Long-Term; Short-Term; Pulmonary; Near-roadway; Cardiovascular; Birth Effects; Epidemiological Evidence; Toxicological Evidence. **Reading:** Journal Articles.

8 **Particulate Matter Health Effects** — Long-Term; Short-Term; Pulmonary; Cardiovascular; Birth Effects; Epidemiological Evidence; Toxicological Evidence. **Reading:** Journal Articles.

8 **Indoor Air Pollutants** — Sick Building Syndrome; Importance of Human Time- Activity Patterns; Microenvironment; Emissions from Combustion Sources; Tobacco Smoke; Building Materials; Asbestos; Radon; Consumer Products; Penetration of Outdoor Air; In-Cabin Environment. **Reading:** FP Chapter 15, Journal Articles.

9 **The Greenhouse Effect and Global Climate Change**: Planetary Temperatures; Infrared Window; Accumulation of Greenhouse Gases; Trends in Atmospheric Concentrations; Radiative Forcing; Relative Contribution of GHGs: Carbon Dioxide; Methane; Nitrous Oxide; Chlorofluorocarbons (CFCs); HCFCs; HFCs; Halocarbon Global Warming Potential; Feedback Mechanisms; Evidence of Warming. **Reading:** SP Chapter 23, FP Chapter 14, ICPP 4th Report.

9 **Energy/Air Quality/Sustainability**: Fossil Fuels (Oil, Natural Gas, Coal) vs Sustainable Energy (Wind, Solar, Hydrogen, Nuclear); Role of Energy Efficiency; Renewable Energy; Future Energy Paths—Which Will We Choose?; Implications for Air Quality; “Clean Vehicles:”; Solar Energy. **Reading:** Journal Articles.

10 **Field trip to SCAQMD/El Monte ARB laboratory, buffer lecture, and course review.**

10 **EPA STAR proposal class presentations. Course Review and Open Discussion**

Final Exam: Friday, Monday, March 14, 2016 3:00 PM - 6:00 PM
Learning Objectives and Competencies

Upon completion of this course, you should be able to demonstrate the skills listed as “Course Learning Objectives” below. These learning objectives were selected to help you build skills related to help undergraduates build competencies outlined in the ASPH Undergraduate Public Health learning Outcomes Model (http://www.asph.org/document.cfm?page=1085) and to help MPH, MS, and PhD students in Environmental Health Sciences.

<table>
<thead>
<tr>
<th>COURSE LEARNING OBJECTIVES</th>
<th>HOW THESE LEARNING OBJECTIVES ALIGN WITH COMPETENCIES FOR SPECIFIC DEGREE PROGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undergraduate Public Health Learning Outcomes</td>
</tr>
<tr>
<td>1. Accurately and effectively communicate environmental health risks to critical stakeholders individually and as part of a team.</td>
<td>2.4 Communicate health information to a wide range of audiences through an array of media.</td>
</tr>
<tr>
<td>2. Tailor written communications so that they are appropriate to the target audience.</td>
<td>2.4 Communicate health information to a wide range of audiences through an array of media.</td>
</tr>
<tr>
<td>COURSE LEARNING OBJECTIVES</td>
<td>HOW THESE LEARNING OBJECTIVES ALIGN WITH COMPETENCIES FOR SPECIFIC DEGREE PROGRAMS</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Undergraduate Public Health Learning Outcomes</td>
</tr>
<tr>
<td>3. Describe the basic principles and complexity of air pollution research.</td>
<td>B. 1. Describe the direct and indirect human, ecological and safety effects of major environmental and occupational agents. B. 2. Describe genetic, physiologic and psychosocial factors that affect susceptibility to adverse health outcomes following exposure to environmental hazards. B. 3. Describe federal and state regulatory programs, guidelines and authorities that control environmental health issues. B. 4. Specify current environmental risk assessment methods. B. 5. Specify approaches for assessing, preventing and controlling environmental hazards that pose risks to human health and safety.</td>
</tr>
<tr>
<td>4. To describe the most recent (state-of-the-art) knowledge in air pollution and the current topics and trends in air quality research.</td>
<td>2.3 Discuss the interconnectedness among the physical, social, and environmental aspects of community health. B. 1. , B.2. , B.3. , B.4. , and B.5 (see above)</td>
</tr>
<tr>
<td>COURSE LEARNING OBJECTIVES</td>
<td>HOW THESE LEARNING OBJECTIVES ALIGN WITH COMPETENCIES FOR SPECIFIC DEGREE PROGRAMS</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Undergraduate Public Health Learning Outcomes</td>
</tr>
<tr>
<td>5. Describe an example of air pollution and related health effects and how a prevention approach could be used to address this problem.</td>
<td>3.5 Champion the role of prevention in promoting a healthy community.</td>
</tr>
<tr>
<td>7. Gain hand-on experience on air pollution research.</td>
<td>B. 1. , B.2., B.3., B.4., and B.5 (see above)</td>
</tr>
<tr>
<td>8. Describe an example of how regulations and/or inspections have been used to prevent air pollution; describe who has the authority to impose these regulations in our region.</td>
<td></td>
</tr>
</tbody>
</table>