The general objective of this course is to introduce students to the health hazards and control of physical agents in the workplace. This will be done primarily through lectures on the physiology of target organs, physics principles, measurement methods, health effects, and control methods of noise, radiation (ionizing and non-ionizing), and thermal stress in the work environment.

Students will also receive laboratory based instruction and demonstration of principles covered in the lecture. Additionally, presentation of a peer-reviewed article on a topic relevant to the course material will occur.

The specific objectives for the lectures are:

1. Understand the basic physics of sound and sound propagation
2. Understand the principles behind the measurement of sound, including octave band analysis.
3. Understand the current occupational exposure limits for noise exposure.
4. Understand auditory physiology and the health effects associated with exposure to noise.
5. Identify and recommend appropriate noise control methods.
6. Understand the principles, health effects, measurement and control of thermal stress.
7. Understand the basic physics of ionizing and non-ionizing radiation.
8. Understand the current occupational exposure limits for exposure to ionizing and non-ionizing radiation.
9. Recognize the limitations to current knowledge of health effects associated with exposure to low energy non-ionizing radiation.
10. Understand the health effects associated with exposure to ionizing and high-energy non-ionizing radiation.
11. Understand the principles behind the control of occupational exposure to radiation.

The specific objective for the laboratory exercises are:

1. Investigate and measure the propagation of sound.
2. Investigate and evaluate different methods of noise control.
3. Use, calibrate and understand limitations of instruments used to measure sound.
4. Investigate and measure thermal environment using a variety of instruments.
5. Introduction to instruments used to evaluate exposure to radiation.
6. Select, read, analyze, present and lead discussion on a peer-reviewed journal article related to a physical agent in the workplace.

The Environmental Health competencies for EHS Master of Science students are: A1 Retrieve and organize literature; synthesize and critically evaluate scientific literature in environmental health, public health and other relevant fields; A2 Use existing databases to provide background information or data to address research questions and draw appropriate inferences/estimates from environmental health data; A3 Evaluate seminars and presentations in environmental health and distill the critical and salient issues from them; B4 Identify potential sources of systematic error (bias) as well as random error; C1 Use computer systems and analytic software packages; D1 Make reasonable inferences from results of analysis of observational and analytic studies; E1 Prepare presentation materials including outlines, posters, and Powerpoint presentations; E2 Deliver effective oral presentations individually and as part of a team; F4 Identify and implement appropriate safety controls and practices.

The EHS MPH competencies are: C1 Describe major direct and indirect human health and safety effects of major environmental or occupational agents; C3 Describe federal and state regulatory programs, guidelines, and authorities that control environmental health issues; C5 Specify approaches for assessing, preventing and controlling environmental hazards that pose risks to human health and safety; C6 Identify key sources of data and use existing databases to provide background or supportive data to address environmental health questions.

The following cross-cutting public health competencies (CC) are also reflected in the design and content of the course: communication and informatics; leadership; public health biology; professionalism; program planning; systems thinking.

Textbook: There is no required text for this course. The instructor will provide reading materials as needed. Recommended books include:

ACGIH. 2017 TLVs and BEIs, ACGIH, Cincinnati OH 2017. pp123-244

Grading: Student understanding and mastery of the presented material will be assessed by performance on homework and exams. Students will also submit laboratory reports for evaluation and orally present a journal article.
The course grade will be determined as follows:

- Homework: 25%
- Lab Work/Presentations: 25%
- Final exam: 50%

Date Lecture/Date Laboratory

01/08 Introduction: Noise – Physics of Sound and Measurement.
01/15 Martin Luther King Jr Holiday--No Lecture/Lab.
01/22 Noise – Physics of Sound and Measurement, Continued.
01/29 Noise – Physiology and Noise-Induced Hearing Loss. Lab: Sound Measuring instruments
02/05 Noise – Control, Vibration and Ultrasound. Presentations on noise. Lab: Octave band analysis and dosimetry.
02/12 Ionizing Radiation Part I. Lab: Geiger counting
02/19 President’s Day Holiday, No Lecture/Lab
02/26 Ionizing radiation Part II and Non-ionizing radiation. Ionizing radiation presentations.
03/05 Thermal Stress. Laboratory on heat stress. Non-ionizing radiation presentations.
03/12 Thermal stress presentations (30 min). Wrap-up
03/19: Final Examination (3 hours; Bring your calculator!)

NOTE:

Students needing academic accommodations based on a disability should contact the Center for Accessible Education (CAE) at (310)825-1501 or in person at Murphy Hall A255. When possible, students should contact the CAE within the first two weeks of the term as reasonable notice is needed to coordinate accommodations. For more information: www.cae.ucla.edu